Interpolation in Lie Groups
نویسنده
چکیده
We consider interpolation in Lie groups. Based on points on the manifold together with tangent vectors at (some of) these points, we construct Hermite interpolation polynomials. If the points and tangent vectors are produced in the process of integrating an ordinary differential equation in terms of Lie-algebra actions, we use the truncated inverse of the differential of the exponential mapping and the truncated Baker–Campbell–Hausdorff formula to relatively cheaply construct an interpolation polynomial. Much effort has lately been put into research on geometric integration, i.e., the process of integrating differential equations in such a way that the configuration space of the true solution is respected by the numerical solution. Some of these methods may be viewed as generalizations of classical methods, and we investigate the construction of intrinsic dense output devices as generalizations of the continuous Runge–Kutta methods.
منابع مشابه
Sampling and Interpolation on Some Nilpotent Lie Groups
Let N be a non-commutative, simply connected, connected, two-step nilpotent Lie group with Lie algebra n such that n = a⊕ b⊕ z, [a, b] ⊆ z, the algebras a, b, z are abelian, a = R-span {X1, X2, · · · , Xd} , and b = R-span {Y1, Y2, · · · , Yd} . Also, we assume that det [[Xi, Yj ]]1≤i,j≤d is a non-vanishing homogeneous polynomial in the unknowns Z1, · · · , Zn−2d where {Z1, · · · , Zn−2d} is a ...
متن کاملLocal and Global Interpolation Inequalities on the Folland-stein Sobolev Spaces and Polynomials on Stratified Groups
We derive both local and global Sobolev interpolation inequalities of any higher orders for the Folland-Stein Sobolev spaces on stratified nilpotent Lie groups G and on domains satisfying a certain chain condition. Weighted versions of such inequalities are also included for doubling weights satisfying a weighted Poincaré inequality. This paper appears to be the first one to deal with general S...
متن کاملARIZONA STATE UNIVERSITY Interpolation in Lie Groups and Homogeneous Spaces
We consider interpolation in Lie groups and homogeneous spaces. Based on points on the manifold together with tangent vectors at (some of) these points, we construct Hermite interpolation polynomials. If the points and tangent vectors are produced in the process of integrating an ordinary di erential equation on a Lie group or a homogeneous space, we use the truncated inverse of the di erential...
متن کاملINEXTENSIBLE FLOWS OF CURVES IN LIE GROUPS
In this paper, we study inextensible ows in three dimensional Lie groups with a bi-invariant metric. The necessary and sucient conditions for inextensible curve ow are expressed as a partial dierential equation involving the curvatures. Also, we give some results for special cases of Lie groups.
متن کاملReal interpolation of Sobolev spaces associated to a weight
We hereby study the interpolation property of Sobolev spaces of order 1 denoted by W 1 p,V , arising from Schrödinger operators with positive potential. We show that for 1 ≤ p1 < p < p2 < q0 with p > s0, W 1 p,V is a real interpolation space between W 1 p1,V and W 1 p2,V on some classes of manifolds and Lie groups. The constants s0, q0 depend on our hypotheses.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- SIAM J. Numerical Analysis
دوره 37 شماره
صفحات -
تاریخ انتشار 1999